When a best next recommendation is created, your order data is analysed. Customers and products are added to a matrix (see below). Customers' orders are added to the matrix and the model looks for patterns. Customers with similar purchase behaviour are grouped together. These are your similar shoppers.
Next, the model looks for purchase differences between similar shoppers. The missing products in their matrix are ranked and then considered for recommendation.
Access predictive recommendations
If your account does not have predictive recommendations enabled:
Go to Content > Products > Recommendations.
Select CREATE RECOMMENDATION.
Hover over a predictive recommendation type, and select LEARN MORE.
A side panel allows you to request the feature is enabled on your account (for an additional monthly charge). We first review your data and then confirm with you that the feature is ready to use, or if there are data dependencies to be resolved first.
Predictive recommendations are available on a 30-day free trial.
Get the best results
Before getting started, please review the data dependencies for this product recommendation type.
This model is forgiving of catalogs with low detail. It only considers order data for making recommendations. The more order data you have, the higher the accuracy of the recommendations.
Why use Best next recommendations?
Best next has lower data dependencies than used by our lookalikes recommendation (content-based filtering). As such, it is able to generate recommendations quickly. It provides good quality recommendations for most types of retailer.